
Certification Infrastructure for the
Linux Standard Base (LSB)

Vladimir Rubanov, Denis Silakov
Institute for System Programming of the Russian Academy of Sciences,

Russian Linux Verification Center,
{ vrub, silakov}@ispras.ru,

http://linuxtesting.org/

Abstract. Expanding further success of the Linux operating system is
hampered by problems with portabilit y of applications across various Linux
distributions. Identifying and standardizing a common subset of mature
functionalit y available in most Linux distributions is the target of the Linux
Standard Base (LSB), an interface standard being developed by the Linux
Foundation - the leading international consortium to foster the growth of
Linux. Current LSB status is described with the focus on the technical
certif ication infrastructure (frameworks for automated development and
execution of LSB compliance tests and the online certif ication system itself).
The article emphasizes the critical role of the infrastructure in development of
the standard itself and in its successful adoption in real world practice.

1. Introduction

Linux proved itself as an industrial strength operating system. It is deployed on an
ever increasing number of computers from supercomputers, servers and desktops to
mobile phones and embedded systems. We are witnessing the extraordinary growth
in the Linux community including application developers. However, there are some
negative issues, which need to be addressed. Application developers are faced with a
large and constantly increasing number of Linux distributions from dif ferent vendors
and they need to take into account the many dif ferences between these packages
when they want to develop applications “for the Linux platform”. That is why
defining Linux as a uniform platform is crucial for keeping the growth and ensuring
vitali ty of this operating system.

Removing differences in the core platform services provided by different
distributions is important for decreasing the costs of developing Linux applications.
This directly affects the number of applications available for this platform, which is
one of the key characteristics of operating system adoption.

At the moment of writing this article there are 543 (!) different distributions
registered at http://lwn.net/Distributions/. And this number does not take into
account special versions developed for internal company or individual use. But what

80 Vladimir Rubanov, Denis Silakov

is Linux from the application developer’s point of view? It is a combination of
system components such as kernel and libraries that work jointly to provide
application programming interfaces (APIs) to applications. The problem is that every
Linux distribution consists of a unique set of specifi c versions and builds of such
components, which results in that distributions may vary in the number of and
behavior of the provided to applications interfaces both at the API and binary levels.
That is why applications that work on one distribution may fail on another and
supporting multiple distributions becomes a serious problem for application
developers. Of course, it is possible to develop specific versions of an application for
particular distributions but this is rather expensive and may not be affordable for
some developers, which may completely reject supporting Linux platform. This
inhibits growth of Linux applications and the adoption of the platform itself as
developers want to develop applications “f or Linux” not just for RedHat or Suse.

To approach this problem, it was proposed to standardize a common set of
functionality in the main distributions and recommend using only these functions
when developing portable Linux applications. This would enable portabilit y of
compliant applications across all compliant distributions.

This article contains two sections. The first one introduces the main industry
standard targeted at solving portabili ty problems for Linux applications - Linux
Standard Base (LSB) [1]. The second section presents the experience and results of
the Institute for System Programming of the Russian Academy of Sciences
(ISPRAS) in building certification infrastructure for this standard. Such
infrastructure turned out to be extremely important for successful adoption of the
standard.

2. Linux Standard Base (LSB) - the Single Linux Platform

The core idea of the Linux Standard Base (LSB) standard is to describe a subset of
Linux interfaces provided by various libraries that constitute “the Linux platform”
from the application developer point of view. This subset should be present in most
Linux distributions and provide compatible services. Description should include
information about binary level symbol (ELF name) of each interface and API-level
information (parameters, return values and corresponding types) including behavior
specification of the interfaces. To develop such a standard, a non-profit international
consortium was founded in 2000 - Free Standards Group (at present Linux
Foundation [2]), supported by the leading IT companies including IBM, Intel, HP,
Novell , and Oracle. The first version of the standard was published in June 2001 and
covered about 3000 interfaces. In the next years the standard grew and matured with
each new version covering more and more interfaces (while excluding some
obsolete). The current LSB version is 3.2 and it includes over 30000 interfaces from
more than 40 libraries. Most of the main Linux distributions have now been certified
for LSB compliance.

The important thing about LSB is that it does not try to impose something
completely new on Linux distribution vendors. In many cases LSB just refers to

Certif ication Infrastructure for theLinux Standard Base (LSB)

established industry standards and documentation that existing implementations
conform to de-facto. Such referenced specif ications include SUSv3 (POSIX), ISO
C99, ISO C++ Language and various documentations maintained by upstream
component developers. And only in the case of missing stable description of an
interface, LSB describes it on its own based on real-world implementation of this
interface present in the main distributions.

When considering standardization scope, LSB uses the “best practice” criterion.
This means an interface becomes a candidate for inclusion in LSB when it is present
in all the main Linux distributions and is actively used by real applications. In other
words, interfaces for standardization should be quite popular both in the distribution
and in the application domains. Also, some technical requirements should be met
such as that interfaces should have stable implementation, documentation and tests.
It is important to note that the role of a vendor-independent international consortium
helps Linux Foundation to take unbiased decisions when developing LSB.

The modern LSB version 3.2 includes 5 mandatory modules:
x LSB Core - low-level system interfaces in C (libc, libcrypt, libdl, libm,

libpthread, librt, libutil, libpam, libz and libncurses libraries).
x LSB C++ - standard real-ti me support library for C++ (libstdcxx library).
x LSB Desktop - various functions for working with graphical interfaces and

auxili ary services (mainly XML, X11, GTK and Qt).
x LSB Interpreted Languages - Perl and Python environment and modules.
x LSB Printing - basicall y libcups library.

The first three modules include both generic (architecture independent) and
architecture specific elements that are roughly structured in the following hierarchy:
module->library->group->interface. LSB 3.2 supports 7 architectures - IA32 (x86),
AMD64 (x86_64), IA64 (Itanium), Power PC 32, Power PC 64, IBM S390 and IBM
S390X. Interpreted Languages and Printing modules have only generic descriptions.

An important factor in understanding the purpose of LSB is that this standard is
not targeted at all Linux distributions and applications. It is for the most of them that
are quite general purpose. Specialized distributions (like embedded) and some
system applications may not need to be fully LSB compliant. Meanwhile, even if an
application uses some interfaces beyond LSB then LSB still does matter when
developing such application as it allows reducing development costs due to the
intersection with LSB that one can rely upon. To enable compatibil ity for those
interfaces outside LSB, one can use separate methods like static linking of necessary
libraries or developing special stub proxies that hide dif ferences between different
distributions. LSB just allows reducing the number of interfaces for which such
special means are needed.

81

82 Vladimir Rubanov, Denis Silakov

3. LSB Technical Infrastructure

One of the key success factors for developing and supporting an interface standard
like LSB is a proper technical infrastructure that automates main processes for
maintaining the standard itself and that brings the standard closer to real developers.
In the particular case of LSB the main components of its infrastructure include
generators of the standard’s text itself and associated header files based on a central
database, a web portal for LSB developers, analytical and decision support systems,
certification tests and frameworks for their effective development, execution, result
analysis and finally certification. We will give an overview of these systems later in
this section after presenting some historic background.

3.1 LSB Infrastructure Program

The origins of the current team involved in the LSB infrastructure development
come from the Open Linux VERification (OLVER) project –
http://linuxtesting.org/project/olver. The project was done by the Russian Linux
Verification Center [3] at the Institute for System Programming of the Russian
Academy of Sciences (ISPRAS) [4]. It was funded by the Russian Federal Agency
for Science and Innovation. We analyzed the text of the LSB Core standard for about
1500 Linux system interfaces, delineated elementary assertions and transformed
them into formal specifications in the SeC language from which we then generated
conformance tests for automated testing of Linux distributions against LSB Core
requirements [5].

The OLVER project results turned out to be of high interest for the Linux
community and LSB standard body committee (Free Standards Group at that
moment), which proposed ISPRAS a long term cooperation for building a new LSB
infrastructure to meet the growing needs of the Linux industry for this standard. The
weak infrastructure that existed at that moment (late 2006) was the most burning
point for LSB community that hindered wider LSB adoption. In particular, it was
criti cal to improve the certification framework and strengthen test coverage. In early
2007, the Free Standards Group merged with Open Source Development Labs and
the newly created Linux Foundation extended cooperation with ISPRAS to cover
more infrastructure areas and prepare the jump base for promoting wide LSB
adoption. It is important to note that all results (specifications, tools, frameworks)
contributed by the Linux Foundation and its partners like ISPRAS to the LSB
ecosystem are open-source and Linux developers are encouraged to use them and
adapt. The first results of the new LSB Infrastructure Program [6] were announced in
June 2007 at the first Linux Foundation Collaboration Summit in Mountain View,
CA and since that moment they are being continuously improved with regular
releases. Next in this section we describe the current (June 2008) status of these
developments with focus on the certification related parts.

Certif ication Infrastructure for theLinux Standard Base (LSB)

3.2 LSB Database and Navigator

The backbone of the entire technical LSB infrastructure is the central database
(MySQL engine is used) that contains integrated information about the LSB standard
itself, about its surrounding Linux ecosystem and various operational matters
including certifications. The current database contains 81 tables with over 25 mill ion
records. There are three parts of the database:

1. The standardization part includes information about LSB elements that
constitute the essence of the standard itself.

2. The community part contains information about real-world modern Linux
distributions and applications.

3. The certification part keeps information about the certifi cation status of
various products, audit operations, fee payments, etc.

Thestandardization part includes the following elements:
x grouping elements:
o modules (collections of libraries and commands);
o libraries (collections of library groups and headers);
o library groups (collections of classes and interfaces);
o headers (collections of interfaces, types and constants);

x and leaf elements:
o commands;
o classes;
o interfaces (global variables and public functions);
o constants and macros;
o types.

These elements are interlinked into a graph of dependencies of various kinds.
Information contained in this part of the database is enough to generate complete
header fil es that define all standardized interfaces.

The idea of the community part is to have a single place with “raw” information
about the Linux ecosystem from the platform standardization point of view.
Basicall y it allows understanding which interface elements are provided by particular
versions of distributions and which ones are required by various particular
applications.

The certification part supports certification process and is visible to users
through the LSB Certified Product Directory (that shows the list of LSB certified
products) and through the online LSB Certification System (that tracks and manages
certif ication workflow).

The database is used by various tools, among which one should emphasize over
40 scripts that generate LSB deliverables such as the text of the standard itself,
header files and various code pieces that are part of implementation of other LSB
tools (mainly SDK and tests).

83

84 Vladimir Rubanov, Denis Silakov

To efficiently use the database information from the human point of view, we
have created a web portal that provides user interface and brings the database closer
to people. This is a public portal named LSB Navigator (http://linux-
foundation.org/navigator/) that provides search, fil tering & browsing capabilities to
effectively find necessary information about the LSB and the Linux ecosystem. It
can be used by Linux developers, Linux distribution vendors, and LSB workgroup to
browse, query, analyze and submit feedback. It is important that the LSB Navigator
is used by the LSB workgroup for gathering info when taking decisions about the
standardization scope. Selected features of the LSB Navigator include:
x Navigation through the standardized LSB elements from modules down to

leaf elements like interfaces and constants.
x Global fil ters for LSB version and hardware architecture.
x Individual home pages for over 1 mill ion Linux interfaces (each is just 2-

click away from the main page via search) that include information on:
o status of each interface in terms of LSB (in LSB, never been in LSB,

planned for inclusion, withdrawn, deprecated);
o LSB info (module, library, header fil e, etc.);
o interface signature (parameters and return value);
o direct link to documentation of the interface;
o which distributions provide this interface;
o which applications use this interface;
o which tests are available for this interface;
o community discussions related to the interface.

x Distribution info (provided libraries and interfaces).
x Application info (external libraries and interfaces required by each app).
x Statistics on LSB elements (total numbers of interfaces, commands, classes in

each LSB version).
x Statistics on interface usage by applications:
o which interfaces are most frequently used by different applications (list of

interfaces with info on how many applications use each interface);
o which libraries are most frequently used by different applications (list of

libraries with info on how many applications use each library);
o LSB “rating” of registered applications (list of applications with info on the

number of LSB and non-LSB libraries and interfaces used by each
application).

An important idea in the context of supporting certifi cation is that the LSB
Navigator serves as an online reference and a knowledge base for the LSB standard.
Other systems can easily use links to specific pages in the Navigator thus providing
an integrated environment for users.

3.3 LSB Certification Tests

Ian Murdock, the former LSB Chair, said: “An interface standard is only as good as
its test suites”. In late 2006, the LSB test coverage was about 15%, which means that

Certif ication Infrastructure for the Linux Standard Base (LSB)

85% of standardized interfaces did not have tests at all. That is why developing new
tests that check conformance of distributions against the requirements of LSB
standard was the first priority to enable real lif e value of this standard. The problem
is that the number of interfaces in the LSB is too huge to develop tests of excellent
quali ty for all of them. To create a feasible strategy for developing LSB tests, we
defined three testing qualit y grades (the borders between the testing grades are
obscure as the scale is actually continuous):
1. Shallow – simple tests with the only guaranteed purpose of ensuring the

interface does not crash (sometimes it is additionally checked that the interface
does not return an error code) being called with some particular correct
parameters and in the correct environment. This is close to “existence” or
“smoke” or “sanity” tests (but beware - these terms are interpreted differently by
different experts).

2. Normal – this is the most reasonable level of testing achievable by tests written
in plain C. The tests check the main functionality and may check a few error
scenarios. Most of the legacy LSB tests are of this quality.

3. Deep – this is the level when most of the specification assertions are tested in
various conditions/states. This is usuall y done for most important and critical
software.

To develop tests of corresponding grades, we are using dif ferent approaches.
For shallow tests, we developed a new technology and tools (AZOV

Framework) for automatic generation of shallow tests based on some description of
the interfaces, their parameters, dependencies and default values in the LSB
database. The core idea here is to augment the database to contain enough
information about the interfaces and their dependencies that would allow
automaticall y building correct call chains representing typical scenarios of interface
usage. The first version of the shallow testing framework is ready and is now being
used for Qt tests development. The cost of developing shallow tests is mainly in
populating the information in the database + debugging automatically generated
tests.

Normal tests are basicall y manual C tests, though we do use some automation
here as well. We have been inspired by the generator that we found in the existing
LSB tests for GTK – gtkvts. Basicall y, it allows automaticall y generating many test
instances based on the same parameterized code thus achieving better testing qualit y
without duplicating the code. However, we found particular gtkvts implementation
limi ted and we used only the idea while implemented our own tools and
methodology called T2C (template-to-C). The first version of the T2C Framework is
ready and is now being used for developing GTK, C++ and X11 tests.

Deep level of testing is hard to achieve by manual tests in C; so advanced testing
technologies are necessary here. We use our own ISPRAS UniTESK technology for
this. It is based on a model-based testing technique where requirements for the target
system are expressed as formal specifications in a special language (SeC in
UniTESK) and then various test actions are automatically generated on-the-fly from

85

86 Vladimir Rubanov, Denis Silakov

test scenarios. Our former project OLVER (see 3.1 above) was based on this
technology and now we are adapting/improving it to become official LSB tests for
the LSB Core part.

For the normal and deep tests, it is important to have linkage to the text of the
specification assertions. This means when a test fails it should say which particular
assertion in the standard’s text is violated as well as provide info about particular
mismatch (like XX expected, YY returned). Normal and deep tests being developed
in ISPRAS do have this feature and analyzing reports and debugging failures is much
easier with this approach. Leveraged by a visual execution environment and
interactive HTML reports this gives unprecedented comfort for the users. Apart from
better reporting, the assertion catalog also enables measuring test coverage in terms
of the number of assertions checked by the tests, which gives an advanced level of
test quality measurement.

Currently, there is a testing strategy being implemented by ISPRAS to achieve
almost 100% test coverage for LSB interfaces by the end of 2008 but with most of
the tests of shallow quality. The target for the end of 2009 is to cover most of the
libraries with normal quality tests and the most important part (LSB Core) with deep
qualit y tests.

3.4 LSB Certification Tools

To make LSB certification and testing technically appealing, it is important to
have user-friendly systems that support these processes. As a part of the LSB
Infrastructure program in early 2008 we created a new web-based Certif ication
System that guides people certifying their products through the certifi cation
workflow and keeps records for certifi ed products. The new certification system
includes three major parts:
x Certification Management provides step-by-step instructions on what to do and

enables easy status tracking and collaboration with LF staff during the
certification process for companies and individuals who want to certif y their
Linux distributions or applications against LSB.

x Product Directory is a public part of the Certification System that contains the
current list of LSB-certified Linux distributions and applications with various
views and groupings.

x Problem Reporting is for online collaboration on solving problems arising in the
process of certification. It also provides a knowledge base of various issues and
solutions.

There is also Administration Mode that allows managing the certification system
from the LF side with full rights on administering all the data.

Finall y, at the technical level of certifi cation process it is necessary to be able to
smoothly execute automated tests and analyze the results. For this purpose, we have
developed Distribution and Application Testkit Managers (DTK and ATK
Managers) for testing distributions and applications respectively. These tools are

Certif ication Infrastructure for theLinux Standard Base (LSB)

web-based with embedded simple web-server. ATK Manager is also known as Linux
Application Checker.

The tools represent test execution frameworks that have the following key
features:

x integrated user interface for all the LSB test suites (web based and
command line);

x selection of tests to run (all, manually selected subset, predefined subsets,
etc.);

x saving/loading configured options in user profiles for quick test runs in the
future;

x automatic download of missing test suites from the Linux Foundation FTP
site;

x 'one-click execution of certification tests;
x unified test reports with links to the knowledge base of known issues and to

home pages of interfaces in the LSB Navigator for more information
including community discussions;

x management of test results history.

Further, the ATK Manager provides features for application analysis without regard
to the certification process. These features include viewing the list of all external
libraries and interfaces required by an application with status in LSB perspective (if
in the LSB or not). In particular, this allows detecting unused libraries present in
DT_NEEDED section of the application under analysis but without actual interfaces
used by the application in such libraries.

The online certification system and ATK/DTK Mangers are integrated to
provide transparent switches between local and the LF central-server based
functionality to provide an easy to use complete certification process.

4. Conclusion

Problems of application portabilit y among different Linux distributions prove to
be one of the most important factors that inhibit the growth of the number of
applications available for Linux and thus prevent developing further success of the
Linux platform as a whole. In this paper we have considered the Linux Standard
Base open standard, which is the primary modern effort to address this problem. A
number of industry companies initiated this activity to standardize a common subset
of Linux functionalit y that most applications can rely upon. Currently the LSB
standard is developed by the Linux Foundation international consortium with
funding of such companies as IBM, Intel, HP, Novell, Oracle, etc.

In order to develop a good interface standard such as LSB it is crucial to have a
proper technical infrastructure. The Linux Foundation jointly with the Institute for
System Programming of the Russian Academy of Sciences are developing such an
infrastructure for the LSB standard.

87

88 Vladimir Rubanov, Denis Silakov

The current results of this cooperation include new production versions of the
following systems:
x Central LSB Database & various data transformation scripts.
x LSB Navigator – a web portal on top of the central LSB database with

advanced navigation, queries, community collaboration mechanisms,
developers’ feedback and contribution interface to promote information about
the LSB and surrounding ecosystem and also for making decisions on the
LSB standardization scope.

x LSB DTK and ATK Managers – to automate Linux distribution and
application certification testing in a user friendly way.

x LSB Certification System (integrated with the ATK/DTK Managers) - to
support and facilitate LSB certification workflow.

x Misc. auxil iary tools for automating investigation and analytical tasks.
x New testing technologies and tools for automated test development of various

quality grades:
o UniTESK for deep testing (ISPRAS owned technology with over 10 years

history).
o T2C – methodology and tools for normal tests development (developed

speciall y for the LF on top of TET harness and ideas of gtkvts .inp files).
o Azov – innovative methodology and tools for automated massive

development of shallow tests based on extended information from the
central LSB database (developed specially for the LF).

x New tests for more than 19000 of LSB interfaces.

The developed infrastructure is being used in real li fe and has been getting many
positive responses. Meanwhile, there are plans to improve many issues - first of all,
mature all the tools and achieve 100% test coverage of the LSB interfaces. This will
help making the LSB standard the acknowledged “single Linux platform” that really
mitigates application portabilit y problems, which wil l clear the way for further
expansion of Linux.

5. References

[1] Linux Standard Base Homepage.
http://www.linuxfoundation.org/en/LSB/.

[2] Linux Foundation.
http://l inuxfoundation.org/

[3] Linux Verification Center. http://linuxtesting.org/
[4] Institute for System Programming of the Russian Academy of Sciences.

http://ispras.ru/
[5] V. Kuliamin, A. Petrenko, V. Rubanov, A. Khoroshilov. Formalization of

Interface Standards and Automatic Construction of Conformance Tests.
Proceedings of SECR 2006 conference, Moscow.

[6] LSB Infrastructure Program.
http://ispras.linuxfoundation.org/

